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Abstract. The intensity of an electromagnetic wave interacting self-consistently with a beam of charged
particles as in a free electron laser, displays large oscillations due to an aggregate of particles, called the
macro-particle. In this article, we propose a strategy to stabilize the intensity by re-shaping the macro-
particle. This strategy involves the study of the linear stability (using the residue method) of selected
periodic orbits of a mean-field model. As parameters of an additional perturbation are varied, bifurcations
occur in the system which have drastic effect on the modification of the self-consistent dynamics, and in
particular, of the macro-particle. We show how to obtain an appropriate tuning of the parameters which
is able to strongly decrease the oscillations of the intensity without reducing its mean-value.

PACS. 94.20.Wj Wave/particle interactions – 05.45.Gg Control of chaos, applications of chaos – 11.10.Ef
Lagrangian and Hamiltonian approach

1 Introduction

The self-consistent interaction between an electromagnetic
wave (or a set of electromagnetic waves) and a beam
of charged particles is ubiquitous in many branches of
physics, e.g. accelerator and plasma physics. For instance,
it plays a crucial role in the Free Electron Laser (FEL),
which is used to generate a tunable, coherent, high power
radiations. Such devices differ from conventional lasers in
using a relativistic electron beam as its lasing medium.
The physical mechanism responsible for the light emission
and amplification is the interaction between the beam and
a wave, which occurs in presence of a magnetostatic pe-
riodic field generated in an undulator. Due to the effect
of the magnetic field, the electrons are forced to follow si-
nusoidal trajectories, thus emitting synchrotron radiation.
This initial seed, termed spontaneous emission, acts as a
trap for the electrons which in turn amplify it by emitting
coherently, until the laser effect is reached.

The coupled evolution of radiation field and N parti-
cles can be modeled within the framework of a simplified
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Hamiltonian picture [1]. The N + 1 degree of freedom
Hamiltonian displays a kinetic contribution, associated
with the particles, and a potential term accounting for
the self-consistent coupling between the particles and
the field. Hence, direct inter-particle interactions are ne-
glected, even though an effective coupling is indirectly pro-
vided because of the interaction with the wave.

The linear theory predicts [1], for the amplitude of the
radiation field, a linear exponential instability and a late
oscillating saturation. Inspection of the asymptotic phase-
space suggests that a bunch of particles gets trapped in
the resonance and forms a clump that evolves as a single
macro-particle localized in phase space. The untrapped
particles are almost uniformly distributed between two
oscillating boundaries, and populate the so-called chaotic
sea.

Furthermore, the macro-particle rotates around a well
defined center and this peculiar dynamics is shown to be
responsible for the macroscopic oscillations observed for
the intensity [2,3]. It can be therefore hypothesized that
a significant reduction in the intensity fluctuations can
be gained by implementing a dedicated control strategy,
aimed at confining the macro-particle in space. As a side
remark, note that the size of the macro-particle is di-
rectly related to the bunching parameter, a quantity of
paramount importance in FEL context [3].
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For example, a static electric field [4–6] can be used
to increase the average wave power. While the chaotic
particles are simply accelerated by the external field, the
trapped ones are responsible for the amplification of the
radiation field.

The dynamics can also be investigated from a topologi-
cal point of view, by looking at the phase space structures.
In the framework of a simplified mean field description,
i.e. the so-called test-particle picture where the particles
passively interact with a given electromagnetic wave, the
trajectories of trapped particles correspond to invariant
tori, whereas unbounded particles evolve in a chaotic re-
gion of phase-space. Thus, the macro-particle corresponds
to a dense set of invariant tori. Our strategy is to mod-
ify the macro-particle dynamics by restoring or destroying
invariant tori in selected regions of phase space.

A technique of Hamiltonian control can be used [7,8]
to reconstruct additional invariant tori around the macro-
particle, in order to enhance the trapping. A specific per-
turbation is computed, which guarantees the confinement
on invariant tori of trajectories characterized by a specific
energy.

In this paper, we propose a strategy to stabilize the in-
tensity of the wave, by modifying the characteristics of the
macro-particle. A (generic) one or several-parameter fam-
ily of perturbations is introduced, which allows us to mod-
ify the topology of phase-space by tuning appropriately
the parameters. The residue method [9,11–13] is used to
identify the important local bifurcations happening in the
system when the parameters are varied, by an analysis of
linear stability of selected periodic orbits. This technique
enables to monitor the size, gyration and internal struc-
ture of the macro-particle. An appropriate tuning of the
parameters is able to strongly decrease the oscillations of
the intensity without reducing its mean-value.

The paper is organized as follows: in Section 2, the
test-particle model is presented. The latter provides a sim-
ple topological representation of the self-consistent inter-
action. In Section 3, the residue method is discussed: in
particular we show how local bifurcations can generate an
enlargement of the macro-particle. In Section 4, we apply
the above method to re-shape both the size and the inter-
nal structure of the macro-particle. Finally, in Section 5
we draw our conclusions.

2 Dynamics of a single particle

The dynamics of the wave-particle interaction has been
described in reference [1] by the N -body Hamiltonian, ac-
counting for a kinetic contribution and an interaction term
between the particles and the radiation field:

HN ({θj , pj}, φ, I) =
N∑

j=1

p2
j

2
− 2

√
I

N

N∑

j=1

cos (φ + θj), (1)

where (θj , pj) are the conjugate phase and momentum of
the ith particle, and (φ, I) stand respectively for the con-
jugate phase and intensity of the radiation field. Since φ
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Fig. 1. Normalized intensity I/N from the dynamics of
Hamiltonian (1), with N = 10 000 particles and HN = 0,
PN = 10−7.
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Fig. 2. Snapshot of the N particles at t = 1000, with N =
10 000 (same parameters as Fig. 1). The grey points correspond
to the chaotic particles, the dark ones to the particles in the
macro-particle.

is a phase, (φ, I) belongs to T × R
+ where T is the one-

dimensional torus. Here (θj , pj) belongs to T × R. The
phase space of the system is then T

N+1 × R
N × R

+. We
notice that there are two conserved quantities: HN and
the total momentum PN = I − ∑

j pj . We consider the
dynamics given by Hamiltonian (1) on a 2N -dimensional
manifold (defined by HN = 0 and PN = ε where ε is
infinitesimally small).

Starting from a negligible level (I = ε small and
pj = 0), the intensity grows exponentially and eventu-
ally attains a saturated state characterized by large oscil-
lations, as depicted in Figure 1. Concerning the particle
dynamics, around half of them are trapped by the wave
and form the so-called macro-particle (see Fig. 2). A parti-
cle is trapped if it travels in the potential well of the wave,
after the system has reached saturation, which reads:

∃k ∈ Z such that ∀t ≥ tsat,

(2k − 1)π < θ(t) + φ(t) < (2k + 1)π. (2)

The remaining particles experience a chaotic motion
within an oscillating waterbag, termed chaotic sea, which
is unbounded in θ contrary to the macro-particle.

In order to get a deeper insight into the dynamics, we
consider the motion of a single particle. For large N , we
assume that its influence on the wave is negligible, thus
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Fig. 3. Fourier transform of the interaction term h(t), as ob-
tained from simulations of Hamiltonian (1), after saturation
has been reached (same parameters in Fig. 1).

it can be schematized as a passive particle in an oscillat-
ing field. The motion of this test-particle is described by
the following Hamiltonian with one and a half degrees of
freedom:

H1p(θ, p, t) =
p2

2
− 2

√
I(t)
N

cos (θ + φ(t)) (3)

=
p2

2
− Re

(
h(t)eiθ

)
, (4)

where the interaction term h(t) is derived from some sim-
ulations of the original N -body Hamiltonian (1). In the
saturated regime, h(t) is mainly periodic (see Fig. 3). A
refined Fourier analysis [14] shows that it can be writ-
ten as:

h(t) = 2

√
I(t)
N

eiφ(t) ≈ [F + αeiω1t + βe−iω1t]eiΩt, (5)

where Ω = −0.685 stands for the wave velocity and ω1 =
1.291 for the frequency of the oscillations of the intensity.
As for the amplitudes, the Fourier analysis provides the
following values: F = 1.5382 − 0.0156i, α = 0.2696 −
0.0734i and β = 0.1206 + 0.0306i.

Hamiltonian (3) results from a periodic perturbation of
a pendulum described by the integrable Hamiltonian H0

H0 =
p2

2
− |F | cos(θ + Ωt + φF ),

where F = |F |eiφF . The linear frequency of this pendulum
is

√|F | ≈ 1.240 which is very close to the frequency of
the forcing ω1. Therefore a chaotic behaviour is expected
when the perturbation is added even with small values of
the parameters α and β.

The Poincaré sections (stroboscopic plot performed at
frequency ω1) of the test-particle (see Fig. 4) reveals that
the macro-particle corresponds to a set of invariant tori.
Conversely, the chaotic sea is filled with seemingly erratic
trajectories of particles. The rotation of the macro-particle
and the oscillations of the waterbag can be visualized by
translating continuously in time the stroboscopic plot of
the phase space.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

θ + Ω t [2π]

p 
−

 Ω

Fig. 4. Poincaré section of a test-particle, described by Hamil-
tonian (3). The periodic orbits with r.n. 7 are marked by plus
(elliptic orbit) and crosses (hyperbolic orbit).
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Fig. 5. Poincaré section of Hamiltonian (1), when the particles
intersect the plane dI(t)/dt = 0. The different trajectories are
represented by different grey levels.

The macro-particle is organized around a central (el-
liptic) periodic orbit with rotation number (r.n.) 1. The
period of oscillations of the intensity is the same as the
one of the macro-particle which indicates the role played
by this coherent structure in the stabilization of the wave.

Thus, in the test-particle model, the macro-particle is
formed by particles which are trapped on two-dimensional
invariant tori. This picture can be extended to the self-
consistent model, if one considers the projection of a tra-
jectory (φ(t), I(t), {θj(t), pj(t)}j) in the (θ, p) plane, each
time it crosses the hyperplane

∑
j sin (φ + θj) = 0, i.e.

dI/dt = 0. From the full trajectory, we follow a given
particle (an index j) and plot (θj , pj) each time the full
trajectory crosses the Poincaré section.

The trapped particles (following definition (2)) appear
to be confined to domains of phase-space much smaller
than the one of the macro-particle (see Fig. 5). These do-
mains are similar to the invariant tori of the test-particle
model, although thicker. It is worth noticing that not only
these figures have a similar overall layout but there is
a deeper correspondence in the structure of the macro-
particle. For instance, both figures show a periodic orbit
with period 7 at the boundary of the regular region. Since
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we saw that the macro-particle directly influences the os-
cillations of the wave, the test particle Hamiltonian (3)
serves as a cornerstone of our control strategy which con-
sists in modifying the structure of the macro-particle in
order to stabilize the intensity of the wave. This strat-
egy focuses on restoring or breaking-up invariant tori to
reshape the macro-particle. In order to act on invariant
tori, we use the periodic orbits which, as we have seen in
Figures 4 and 5 structure the macro-particle.

3 Residue method

The topology of phase space is investigated by analysing
the linear stability of periodic orbits. Information on
the nature of these orbits (elliptic, hyperbolic or
parabolic) is provided using, e.g., an indicator like Green’s
residue [9,10], a quantity that enables to monitor local
changes of stability in a system subjected to an external
perturbation [11–13,15].

Let us consider an autonomous Hamiltonian flow with
two degrees of freedom which depends on a set of param-
eters λ ∈ R

m:
ż = J∇H(z; λ),

where z = (p, E, θ, t) ∈ R
4 and J =

(
0 −I2

I2 0

)
, and I2

being the two-dimensional identity matrix. In order to
analyse the linear stability properties of the associated pe-
riodic orbits, we also consider the tangent flow written as

d

dt
J t(z) = J∇2H(z; λ)J t,

where J0 = I4 and ∇2H is the Hessian matrix (composed
of second derivatives of H with respect to its canonical
variables). For a given periodic orbit with period T , the
linear stability properties are given by the spectrum of the
monodromy matrix JT . These properties can be synthet-
ically captured in the definition of Green’s residue:

R =
4 − trJT

4
.

In particular, if R ∈]0, 1[, the periodic orbit is called el-
liptic (and is in general stable); if R < 0 or R > 1 it is
hyperbolic; and if R = 0 and R = 1, it is parabolic while
higher order expansions give the stability of such periodic
orbits.

Since the periodic orbit and its stability depend on
the set of parameters λ, the features of the dynamics
will change under apposite variations of such parameters.
Generically, periodic orbits and their (linear or nonlinear)
stability properties are robust to small changes of param-
eters, except at specific values when bifurcations occur.
The residue method [11–13] detects the rare events where
the linear stability of a given periodic orbit changes thus
allowing to calculate the appropriate values of the param-
eters leading to the prescribed behaviour of the dynamics.
As a consequence, this method can yield reduction as well
as enhancement of chaos.
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Fig. 6. Residue of the elliptic (bold curve) and hyperbolic
points with r.n. 7 of Hamiltonian (3).

First, we illustrate the method by introducing an ad-
ditional interaction term which depends on a parameter.
The latter has to be properly tuned in order to control the
dynamics. Here, the control term is chosen as

Hc
1p(θ, p, t; λ) = H1p(θ, p, t) − 2λ

√
I(t)
N

cos (2θ + φ(t)),

(6)
and it is therefore similar to the original interaction term
between the charged particle and the wave.

Alternatively, other types of perturbations could be
selected, our choice being solely motivated by didactic
reasons. For λ = 0 (which corresponds to the original
Hamiltonian H1p), we consider two Birkhoff periodic or-
bits which originates from the breakup of invariant tori
with rational ratio of the integrable case (given by the
nonlinear pendulum described by H0 in the previous sec-
tion). These two periodic orbits have the same action but
different angles in the integrable case H0 and have the
same r.n. on the Poincaré section; one is elliptic Oe and
one is hyperbolic Oh (see Fig. 4). Let us recall that the ro-
tation number (or winding number) of a periodic orbit is
the number of times it crosses the Poincaré section before
closing back onto itself.

We call Re and Rh the residues of these orbits. We
have Re(0) > 0 and Rh(0) < 0. We then modify continu-
ously the parameter λ starting from 0. For each value of λ,
we follow continuously the periodic orbit under consider-
ation as well as its linear stability property indicated by
its residue. We plot the values of the residues as a func-
tion of the parameter λ in Figure 6. We notice that at
λ = λc ≈ −0.0370 we have:

Re(λc) = Rh(λc) = 0. (7)

The bifurcation (7) is associated with the creation of
an invariant torus [13]. This diagnostic is confirmed
by the Poincaré section (see Fig. 7) of the controlled
Hamiltonian (6), at λ = λc: the elliptic islands with
r.n. 7 have been replaced by a set of invariant tori in its
neighborhood, leading to an enlargement of the macro-
particle. Note that elliptic islands with r.n. 5 are now
present around the regular core (these orbits were present
in the case λ = 0, but were both hyperbolic in the chaotic
sea). The associated couple of elliptic/hyperbolic orbits
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Fig. 7. Poincaré section of Hamiltonian (6) with λ = λc ≈
−0.0370. The periodic orbits with r.n. 5 are marked by plus
(elliptic orbit) and crosses (hyperbolic orbit).

Fig. 8. Poincaré section of Hamiltonian (6) with λ = λ′′
c ≈

−0.1321.

can be treated similarly as those of r.n. 7 in order to
gain further enlargement of the macro-particle: we modify
the value of the parameter λ of Hamiltonian (6) around
λ = λc, until the condition (7) holds for the residues of
the considered orbits. Such a condition is verified when
λ = λ′

c ≈ −0.0746, and leads to the apparition of a new set
of invariant tori (not shown here); again it appears that el-
liptic islands with r.n. 4 surround the macro-particle. The
process of increasing the size of the macro-particle can
be iterated one step further. We modify the parameter λ
around λ = λ′

c such that condition (7) holds for the peri-
odic orbits with r.n. 4. The residue method predicts the
formation of an invariant torus at λ′′

c ≈ −0.1321. Inspec-
tion of phase-space (see Fig. 8) corroborates our findings,
resulting in an additional extension in size of the macro-
particle.

The test-particle approach is validated using the full
self-consistent Hamiltonian involving N particles (with
N � 1) interacting with the wave. The control is nat-
urally introduced in the self-consistent dynamics as:

Hc
N ({θj , pj}, φ, I; λ) = HN ({θj , pj}, φ, I)

− 2λ

√
I

N

∑

j

cos (2θj + φ), (8)
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Fig. 9. Snapshot of the dynamics in the (θ, p)-plane at t =
1000, when Hamiltonian (8) is simulated with N = 10 000 par-
ticles and λ = −0.1321. Here the control is switched on at
t = 300, i.e. after saturation has been achieved. The grey points
correspond to the particles of the chaotic sea, the dark ones
form the macro-particle [see Eq. (2)].

where HN is given by equation (1). The behaviour of the
system is investigated for the three critical values where
bifurcations happen in the test-particle model λc, λ′

c, and
λ′′

c . For all these cases, simulations based on equation (8)
display a qualitative behaviour similar to the one obtained
for the original unperturbed dynamics (1): first a transient
regime is detected where the intensity grows exponentially,
followed by a subsequent saturation. This regime is char-
acterized by the formation of a macro-particle whose dy-
namics is responsible for the oscillations observed at the
intensity level. Importantly, the macro-particle is shown
to increase in size also when operating within the frame-
work of the relevant self-consistent context (see Fig. 9).
In order to quantitatively characterize the evolution, we
define a radius and a gyroradius associated with the inner
massive aggregate. The radius corresponds to the stan-
dard deviation of the trapped particles, namely:

R(t) =
√
〈(rj(t) − rG(t))2〉j , (9)

where rj(t) = (θj(t), pj(t)) stands for the coordinates of
the jth particle in phase-space, rG(t) = 〈rj(t)〉j represents
the center of mass of the macro-particle, and 〈 〉j∈M de-
notes the average over the subset of particles constituting
the inner core. On the other hand, the gyroradius charac-
terizes the rotation of the macro-particle and reads:

Rgyr =
√
〈(rG(t) − rG)2〉t≥tsat , (10)

where 〈 〉t≥tsat denotes an averaging over time (after sat-
uration has been reached at tsat), and rG = 〈rG(t)〉t≥tsat .
As it is shown in Table 1 the radius R which is almost con-
stant in time, increases by 28% when the control is turned
on at λ = λ′′

c , whereas the gyroradius is significantly re-
duced (by nearly a factor 6). These indicators points to
an effective stabilization of the macro-particle dynamics
in phase-space.

As reference to the wave, the control induces an effec-
tive stabilization of the intensity (see Fig. 10). In order
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Table 1. Characteristics of the macro-particle and the wave
for Hamiltonian (8).

λ 0 –0.037 –0.0746 –0.1321

R 0.7 0.7 0.8 0.9

Rgyr 0.17 0.15 0.11 0.03

〈I〉 0.62 0.66 0.79 0.83

∆I 0.73 0.66 0.66 0.44
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Fig. 10. Intensity of the wave in the saturated regimes for
Hamiltonian (8) for four values of the parameter: λ = 0,
−0.037, −0.0746 and −0.1321. For each value of λ, the system
starts with a negligible value for the intensity, and a monoki-
netic beam of particles.

to quantify the beneficial effects of the control we mea-
sure two quantities, namely the mean value of the in-
tensity 〈I〉 = 〈I(t)〉t≥tsat , and the average fluctuations
∆I = 〈|I(t) − 〈I〉|〉t≥tsat . As confirmed by inspection of
Table 1 the value 〈I〉 is increased by 34% when the control
is turned on, while the oscillations have damped by 39%.

4 Towards an effective stabilization
of the intensity

In the previous section we provided numerical evidence
that our method enables to modify the size and position
of the macro-particle. Here we shall take one step further
and demonstrate that we can alter the internal structure
of the massive agglomerate. In particular, we will show
that the macro-particle, originally composed of invariant
tori, can be chaotized, thus inducing an effective mixing
while keeping the particles trapped.

Information on the internal structure of the macro-
particle can be gained from the residue of its central el-
liptic point, in the test-particle picture. In particular, the
destruction of invariant tori can be expected if this or-
bit turns hyperbolic [13]. Thus, the residues allows one
to trace the following two prescribed behaviours for the
system:

1. the chaotization of the macro-particle is controlled by
the residue of the central periodic point (with r.n. 1),

2. the trapping of particles is still guaranteed by the ex-
istence of invariant tori at the borders of the macro-
particle (see Sect. 3).
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Fig. 11. Residues of the elliptic (upper curve) and hyperbolic
(lower curve) points with r.n. 7, and residue of the periodic
point with r.n. 1 (bold curve) of Hamiltonian (11), with all the
parameters set to zero except λ3.

To this aim, the residue method is implemented with a
control term containing additional parameters. We con-
sider the following family of Hamiltonians:

H̃c
1p(θ, p, t; λ) = H1p(θ, p, t)

− 2

√
I(t)
N

K∑

k=2

λk cos (kθ + φ(t)), (11)

with λ = (λ2, λ3 . . . λK), and where H1p is given by equa-
tion (3). Hence, the original system is recovered for λ = 0.

First, the macro-particle is enlarged, while keeping its
core composed of invariant tori: the system is perturbed
by tuning the parameter λ3 around 0; the residues of the
elliptic and hyperbolic periodic orbits with r.n. 7 are mon-
itored until condition (7) is reached at λc

3 ≈ −0.0263 (see
Fig. 11), which in turn corresponds to restoring the in-
variant tori. Meanwhile, the residue of the central elliptic
periodic point (with r.n. 1) remains stable.

The Poincaré section of Hamiltonian (11) with λ3 = λc
3

and λk �=3 = 0, corroborates these predictions (not shown
here, but similar to Fig. 7, though the external elliptic
islands have r.n. 6 instead of 5).

In order to get the macro-particle chaotic, we per-
turb the system (by making λ6 different from 0) until the
residue of the central elliptic orbit (of r.n. 1) crosses 0
or 1, whereas the residues of the periodic orbits of r.n. 6
satisfies condition (7).

Though the latter condition cannot be exactly
matched for small values of λ6, the residue R is shown
to attain its minimal value at λc

6 = −0.0201 (see Fig. 12),
and one can expect a regularization of the dynamics in
this region of phase-space. Meanwhile, the residue of the
central elliptic orbit has crossed 1, so one might expect
chaos in this domain. Notice that it was not possible to
track numerically this central periodic orbit beyond λc

6.
Different scenarios are compatible with this finding. Pos-
sibly the latter has been broken or alternatively it is asso-
ciated with a tiny basin of attraction which prevents the
multi-shooting Newton-Raphson to converge.

The Poincaré section for Hamiltonian (11) with λ3 =
λc

3, λ6 = λc
6 and λk �=3,6 = 0, depicted in Figure 13 displays

a chaotic core, while the invariant tori of its borders are
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Fig. 12. Residues of the elliptic (upper curve) and hyperbolic
(lower curve) points with r.n. 6, and residue of the central
periodic point with r.n. 1 (bold curve) for Hamiltonian (11)
with λ3 = λc

3 and λk �=3,6 = 0 as functions of λ6.

Fig. 13. Poincaré section of Hamiltonian (11) with λ3 =
−0.0263, λ6 = −0.0201 and λk �=3,6 = 0.

preserved, ensuring that the particles remain trapped. We
have computed the Lyapunov exponents in the different
regions of phase space: inside the macro-particle it is equal
to 0.06 whereas, in the chaotic sea it is 0.14, i.e., more
unstable.

In order to complete the analysis, a set of simulations
are performed within the self-consistent framework where
N particles interact with the wave. The additional pertur-
bation is naturally introduced as:

H̃c
N ({θj , pj}, φ, I; λ) = HN ({θj, pj}, φ, I)

− 2

√
I

N

∑

k,j

λk cos (kθj + φ), (12)

where HN is given by equation (1). Simulations in the two
regimes of control, (λ3 = λc

3, λk �=3 = 0) and (λ3 = λc
3, λ6 =

λc
6, λk �=3,6 = 0), confirm the prediction of the mean-field

framework: the macro-particle has been increased and ho-
mogenized (see Fig. 14).

According to our estimates, the radius has been in-
creased by more than 50%, while its gyroradius has been
decreased by two orders of magnitude (see Tab. 2). As for
the intensity of the wave (see Fig. 15), the fluctuations
have been reduced by a factor 40, while the mean-value
has been raised by 50%.
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Fig. 14. Snapshot of the dynamics in the (θ, p)-plane of
the N = 10 000 particles at t = 1000 (the control started
at t = 300) for Hamiltonian (12) with λ3 = −0.0263 and
λ6 = −0.0201. The control term is applied at t = 300, af-
ter saturation has occurred. The grey points correspond to the
particles of the chaotic sea, the dark ones form the macro-
particle.
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Fig. 15. Intensity of the wave in the saturated regime for
Hamiltonian (12) with λk �=3,6 = 0. For each value of λ, the
system starts with a negligible value for the intensity, and a
monokinetic beam of particles.

Table 2. Characteristics of the macro-particle and the wave
for Hamiltonian (12) with λk �=3,6 = 0.

λ3 0 –0.0263 –0.0263

λ6 0 0 –0.0201

R 0.7 1.15 1.22

Rgyr 0.17 0.03 0.0015

〈I〉 0.62 0.88 0.97

∆I 0.73 0.44 0.017

In terms of topology of phase-space, it is interest-
ing to observe that the regularization of the dynamics
is also found within the framework of the original self-
consistent picture (see Fig. 16). Indeed, the confinement
of the trapped particles for Hamiltonian (11) to small do-
mains of phase-space is more pronounced than in the un-
perturbed case of Hamiltonian (1).
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Fig. 16. Poincaré section of Hamiltonian (12) with λ3 =
−0.0263 and λ6 = −0.0201, when the trajectory intersects the
plane dI(t)/dt = 0. The different trajectories are represented
by different grey levels.

5 Conclusion

In this paper, we proposed a stabilization strategy in
a wave-particle system and in particular in the a FEL
setting. The technique uses an appropriate perturbation
of the associated microscopic dynamics. We carried out
our approach in the saturated regime of this system where
the macro-particle, resulting from a set of invariant tori,
plays a crucial role. In the framework of a mean-field ap-
proximation, a linear stability analysis of selected peri-
odic orbits (coined by a residue method) can point at the
creation and destruction of invariant tori, allowing to re-
shape the macro-particle through specific values of the
parameters of the additional perturbation. Numerical sim-
ulations performed for the original N -body self-consistent
picture confirm the validity of the proposed approach and
clearly demonstrate that the method allows one to pre-
dict a set of parameters for which a significant reduction
of the oscillations of the intensity is found. Note that the
residue method is quite flexible and applies to any two
degree of freedom Hamiltonian systems. We expect that
other families of perturbation terms would yield similar
results.

As a final remark, we observed that the chaotization
of the center of the macro-particle (by a bifurcation of the
central elliptic periodic orbit which organizes the macro-
particle) is associated with a strong stabilization of the
intensity.
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